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Abstract

We study the long-range dependence (LRD) of the increments of the fractional

Poisson process (FPP), the fractional negative binomial process (FNBP) and

the increments of the FNBP. We first point out an error in the proof of Theorem

1 of Biard and Saussereau [2] and prove that the increments of the FPP has

indeed the short-range dependence (SRD) property, when the fractional index

β satisfies 0 < β < 1

3
. We also establish that the FNBP has the LRD property,

while the increments of the FNBP possesses the SRD property.
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1. Introduction

The long-range dependence (LRD) property of a stochastic model or a process has

been widely studied in the literature. It has applications to several areas such as

Internet data traffic modeling [8], finance [3], econometrics [14], hydrology [4, p. 461-

472], climate studies [15] and etc. Let {Nβ(t)}t≥0 be a fractional Poisson process (see

[10]), where we call β the fractional index. The LRD property of the fractional Poisson

process (FPP) is proved in [11]. Recently, Biard and Saussereau [2] showed that the
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fractional Poissonian noise (FPN) process {Z1
β(n− 1)}n≥1, defined by

Zδ
β(t) = Nβ(t+ δ, λ)−Nβ(t, λ), 0 < β < 1, δ > 0, t ≥ 0, (1)

has the LRD property. Note that there are several definitions for the LRD property of

a stochastic process. The proof of Biard and Saussereau [2] uses the definition given in

[7] which is based on showing that limm→∞ ∆
(m)
n (see (9)) is infinite. Unfortunately,

there is a mistake in the proof. We show that limm→∞ ∆
(m)
n is finite (see Theorem 1),

which disproves their claim that the FPN has the LRD property. Using an alternate

definition, we show that the FPN {Zδ
β(t)}t≥0 has the short-range dependence (SRD)

property, when β ∈ (0, 1
3 ).

Let {Y (t)}t≥0 be a gamma subordinator so that {Q(t, λ)}t≥0 = {N(Y (t), λ)}t≥0 is

a negative binomial process. Very recently, the fractional negative binomial process

(FNBP) defined by {Qβ(t, λ)}t≥0 = {Nβ(Y (t), λ)}t≥0 is studied in detail in [16]. We

here prove that the FNBP has the LRD property. Let δ > 0 be fixed and define the

increments of the FNBP as

Qδ
β(t) = Qβ(t+ δ, λ)−Qβ(t, λ), t ≥ 0,

which we call the fractional negative binomial noise (FNBN). We prove also that the

FNBN has the SRD property.

The paper is organized as follows. In Section 2, some preliminary notations, results

and definitions are stated. In Section 3, we discuss the proof of Theorem 1 of [2] and

point out an error in their proof showing that FPN has the LRD property. We indeed

prove that the FPN has the SRD property for the case β ∈ (0, 13 ). In Section 4, the

LRD property of the FNBP and the SRD property of the FNBN are proved.

2. Preliminaries

In this section, we introduce the notations and the results that will be used later. Let

Z+ = {0, 1, . . .} be the set of nonnegative integers. Let {N(t, λ)}t≥0 be a Poisson

process with rate λ > 0, so that

p(n|t, λ) = P[N(t, λ) = n] =
(λt)ne−λt

n!
, n ∈ Z+.
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For α > 0, p > 0, let {Y (t)}t≥0 be a gamma subordinator, where Y (t) ∼ G(α, pt) with

density

g(y|α, pt) =
αpt

Γ(pt)
ypt−1e−αy, y > 0. (2)

We say a random variable X follows a negative binomial distribution with parameters

α > 0 and 0 < η < 1, denoted by NB(α, η), if

P[X = n] =

(

n+ α− 1

n

)

ηn(1− η)α, n ∈ Z+. (3)

When α is a natural number, then X denotes the number of successes before the α-th

failure in a sequence of Bernoulli trials with success probability η.

2.1. Fractional Poisson and NB processes

Definition 1. Let 0 < β ≤ 1. The fractional Poisson process (FPP) {Nβ(t, λ)}t≥0,

which is a generalization of the Poisson process {N(t, λ)}t≥0, is defined as the stochastic

process whose p
β
(n|t, λ) = P[Nβ(t, λ) = n] satisfies (see [10, 12, 13])

Dβ
t pβ

(n|t, λ) = −λp
β
(n|t, λ) + λp

β
(n− 1|t, λ), for n ≥ 1,

Dβ
t pβ

(0|t, λ) = −λp
β
(0|t, λ),

where p
β
(n|0, λ) = 1, if n = 0, and is zero if n ≥ 1. Here, Dβ

t denotes the Caputo

fractional derivative defined as

Dβ
t f(t) =



















1

Γ(1− β)

t
∫

0

f ′(s)

(t− s)β
ds, 0 < β < 1,

f ′(t), β = 1,

where f ′ denotes the derivative of f.

The mean and the variance of the FPP are given by (see [10])

E[Nβ(t, λ)] = qtβ , (4)

Var[Nβ(t, λ)] = qtβ
[

1 + qtβ
(

βB(β, 1/2)

22β−1
− 1

)]

,

where q = λ/Γ(1 + β) and B(a, b) denotes the beta function. An alternative form for

Var[Nβ(t, λ)] is given in [1, eq. (2.8)] as

Var[Nβ(t, λ)] = qtβ +
(λtβ)2

β

(

1

Γ(2β)
−

1

βΓ2(β)

)

. (5)
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It is also known that (see [13]) when 0 < β < 1,

Nβ(t, λ)
d
= N(Eβ(t), λ),

where {Eβ(t)}t≥0 is the inverse β-stable subordinator and is independent of {N(t, λ)}t≥0.

Let {N(t, λ)}t≥0 be a Poisson process and {Y (t)}t≥0 be an independent gamma sub-

ordinator (see (2)). The negative binomial process {Q(t, λ)}t≥0 = {N(Y (t), λ)}t≥0 is

a subordinated Poisson process (see [6, 9]) with

P[Q(t, λ) = n] = δ(n|α, pt, λ) =

(

n+ pt− 1

n

)

ηn(1− η)pt,

where η = λ/(α+ λ). That is, Q(t, λ) ∼ NB(pt, η) for t > 0, defined in (3).

Definition 2. The fractional negative binomial process (FNBP) is defined as

Qβ(t, λ) = Nβ(Y (t), λ), t ≥ 0,

where {Nβ(t, λ)}t≥0 is an FPP and is independent of {Y (t)}t≥0.

For more details and additional properties of the FNBP, the reader is referred to [16].

2.2. The LRD and the SRD property

There are several definitions for the LRD and the SRD property of a stochastic process.

We here present those definitions which will be used in this paper.

The following definition is due to [7] and modified for non-centered process in [2]. Let

{Xm}m≥1 be a discrete-time stochastic process. Define Sn =
∑n

j=1 Xj and σ2
n =

∑n
j=1 Var[Xj ], n ≥ 1.

Definition 3. Let {Xm}m≥1 be a second order process (not necessarily stationary)

with the block mean process

Y (m)
n =

Snm − S(n−1)m

σ2
nm − σ2

(n−1)m

, n ≥ 1,

and ∆
(m)
n =

(

σ2
nm − σ2

(n−1)m

)(

Var[Y
(m)
n ]

)

. The process {Xm}m≥1 has the LRD

property if

lim
m→∞

∆(m)
n = ∞.

We next present an alternate definition of the LRD and the SRD property (see [5]).
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Definition 4. Let s > 0 be fixed and t > s. Suppose a stochastic process {X(t)}t≥0

has the correlation function Corr[X(s), X(t)] that satisfies

c1(s)t
−d ≤ Corr[X(s), X(t)] ≤ c2(s)t

−d, (6)

for large t, d > 0, c1(s) > 0 and c2(s) > 0. In other words,

lim
t→∞

Corr[X(s), X(t)]

t−d
= c(s), (7)

for some c(s) > 0 and d > 0. We say {X(t)}t≥0 has the LRD property if d ∈ (0, 1) and

has the SRD property if d ∈ (1, 2).

Note that (6) and (7) are equivalent and imply that Corr[X(s), X(t)] behaves like t−d,

for large t.

3. Dependence structure for the fractional Poisson process

First we require the following result (see [2, Lemma 2]) which gives the factorial

moments of the increments of the FPP. For simplicity, the parameter λ is suppressed

in {Nβ(t, λ)}t≥0 and {Qβ(t, λ)}t≥0, when no confusion arises.

Lemma 1. Let 0 ≤ s ≤ t and q = λ/Γ(1 + β). Then

E
[

(Nβ(t)−Nβ(s))(Nβ(t)−Nβ(s)− 1)
]

= 2βq2
∫ t

s

(t− r)βrβ−1dr. (8)

Note that for the FPN {Z1
β(n − 1)}n≥1, where Z1

β(n − 1) = Nβ(n) − Nβ(n − 1) (see

(1)),

∆(m)
n =

Var[Nβ(nm)−Nβ((n− 1)m)]
∑nm

j=(n−1)m+1 Var[Nβ(j)−Nβ(j − 1)]
. (9)

Biard and Saussereau [2] computed ∆
(m)
n for the FPN {Z1

β(n − 1)}n≥1 and showed

that limm→∞ ∆
(m)
n is infinite. We next show that limm→∞ ∆

(m)
n is indeed finite. It is

convenient to use the notation C(x, y) = xy − (x− 1)y.

Theorem 1. Let 0 < β < 1 and {Z1
β(n− 1)}n≥1 be the FPN. Then limm→∞ ∆

(m)
n is

finite.

Proof. Our proof starts with the observation that, for 0 ≤ s ≤ t,

∫ t

s

(t− r)βrβ−1dr ≤

∫ t

0

(t− r)βrβ−1dr
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= t2β
∫ 1

0

(1 − u)β+1−1uβ−1du (substituting r = tu)

= t2βB(β, 1 + β). (10)

Note β − 1 < 0 and 0 ≤ r ≤ t implies that tβ−1 ≤ rβ−1. Therefore, we have

∫ t

s

(t− r)βrβ−1dr ≥

∫ t

s

(t− r)βtβ−1dr

=
tβ−1(t− s)β+1

β + 1
. (11)

Substituting (10) and (11) into (8) yields

ctβ−1(t− s)β+1 ≤ E
[

(Nβ(t)−Nβ(s))(Nβ(t)−Nβ(s)− 1)
]

≤ 2dt2β, (12)

where c = 2βq2/(β + 1) and d = βq2B(β, 1 + β). Consider now

E
[

(Nβ(nm)−Nβ((n− 1)m))2
]

= E[(Nβ(nm)−Nβ((n− 1)m))(Nβ(nm)−Nβ((n− 1)m)− 1)]

+ E[(Nβ(nm)−Nβ((n− 1)m))]

≤ 2d(nm)2β + q((nm)β − ((n− 1)m)β) (using (12) and (4))

=
(

2dn2β + qC(n, β)m−β
)

m2β . (13)

Using (13), we have

Var
[

Nβ(nm)−Nβ((n− 1)m)
]

= E[(Nβ(nm)−Nβ((n− 1)m))2]

− (E[Nβ(nm)−Nβ((n− 1)m)])
2

≤
(

2dn2β + qC(n, β)m−β
)

m2β

− q2C2(n, β)m2β (using (4))

=
(

2dn2β + qC(n, β)m−β − q2C2(n, β)
)

m2β . (14)

Similarly, we see that for j ≥ 1

E[(Nβ(j)−Nβ(j − 1))2] = E
[(

Nβ(j)−Nβ(j − 1)
)(

Nβ(j)−Nβ(j − 1)− 1
)]

+ E
[

(Nβ(j)−Nβ(j − 1))
]

≥ cjβ−1(j − (j − 1))β+1 + qC(j, β) (using (12) and (4))

= cjβ−1 + qC(j, β),
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which leads to

Var
[

Nβ(j)−Nβ(j − 1)
]

= E
[

(Nβ(j)−Nβ(j − 1))2
]

−
(

E[Nβ(j)−Nβ(j − 1)]
)2

≥ cjβ−1 + qC(j, β) − q2C2(j, β)

≥ cjβ−1 + qC(j, β) − q2C(j, 2β), (15)

since (a− b)2 ≤ a2 − b2, for a ≥ b ≥ 0. Using (15), we have

nm
∑

j=(n−1)m+1

Var[Nβ(j)−Nβ(j − 1)] ≥
nm
∑

j=(n−1)m+1

(

cjβ−1 + qC(j, β) − q2C(j, 2β)
)

≥ cm(nm)β−1 + q((nm)β − ((n− 1)m)β)

− q2((nm)2β − ((n− 1)m)2β),

using
∑k

j=l+1 C(j, β) = kβ − lβ. Therefore, we get
nm
∑

j=(n−1)m+1

Var[Nβ(j)−Nβ(j − 1)] ≥ m2β
[(

cnβ−1 + qC(n, β)
)

m−β − q2C(n, 2β)
]

.

(16)

From (14) and (16), we conclude that

∆(m)
n =

Var[Nβ(nm)−Nβ((n− 1)m)]
∑nm

j=(n−1)m+1 Var[Nβ(j)−Nβ(j − 1)]

≤

[

2dn2β + qC(n, β)m−β − q2C2(n, β)
]

m2β

[(

cnβ−1 + qC(n, β)
)

m−β − q2C(n, 2β)
]

m2β

m→∞
−→

2dn2β − q2C2(n, β)

−q2C(n, 2β)
(since m−β → 0, as m → ∞)

=
C2(n, β)− (2dn2β/q2)

C(n, 2β)
≤

C2(n, β)

C(n, 2β)
≤ 1.

Since ∆
(m)
n ≥ 0, we see that limm→∞ ∆

(m)
n ∈ [0, 1] and hence the result follows.

Remark 1. For t ∈ Z+\{0} and 0 < h < 1, Biard and Saussereau (see [2, Theorem

1]) showed that limm→∞ ∆
(m)
t is infinite using the following inequality in the proof of

Theorem 1
∫ tm

tm−m

(tm− r)hrh−1dr = (tm)2h
∫ 1

1−1/t

(1− u)huh−1du ≥ (tm)2hB(1 + h, h),

which is unfortunately incorrect, since
∫ 1

1−1/t

(1− u)huh−1du ≤

∫ 1

0

(1− u)huh−1du = B(1 + h, h).
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The remainder of this section is devoted to the proof of the SRD property of the

FPN {Zδ
β(t)}t≥0, for 0 < β < 1

3 .

Definition 5. Let f(x) and g(x) be positive functions. We say that f(x) is asymp-

totically equal to g(x), written as f(x) ∼ g(x), as x tends to infinity, if

lim
x→∞

f(x)

g(x)
= 1.

Theorem 2. Let 0 < β < 1
3 . Then the FPN {Zδ

β(t)}t≥0 has the SRD property.

Proof. Let s, δ ≥ 0 be fixed and 0 ≤ s+ δ ≤ t. We start with

Cov[Zδ
β(s), Z

δ
β(t)] = Cov [Nβ(s+ δ)−Nβ(s), Nβ(t+ δ)−Nβ(t)]

= Cov [Nβ(s+ δ), Nβ(t+ δ)] + Cov [Nβ(s), Nβ(t)]

− Cov [Nβ(s+ δ), Nβ(t)]− Cov [Nβ(s), Nβ(t+ δ)] . (17)

It is known that (see [11, p. 9])

Cov [Nβ(s), Nβ(t)] = qsβ + q2
[

βs2βB(β, 1 + β) + F (β; s, t)
]

, (18)

where F (β; s, t) = βt2βB(β, 1+β; s/t)−(st)β andB(a, b;x) =
∫ x

0
ua−1(1−u)b−1du for a >

0, b > 0, is the incomplete beta function. The asymptotic expansion of F (β; s, t) for

fixed s and for large t (see [11]) is given by

F (β; s, t) =
−β

β + 1
(s/t)

β+1
+O

(

(s/t)
β+2
)

∼
−β

β + 1
(s/t)β+1 . (19)

Combining (18) with (17), we deduce that

Cov[Zδ
β(s), Z

δ
β(t)] = q2 [F (β; s+ δ, t+ δ) + F (β; s, t)− F (β; s+ δ, t)− F (β; s, t+ δ)]

∼
−βq2

β + 1

[

(

s+δ
t+δ

)β+1

+
(

s
t

)β+1
−
(

s+δ
t

)β+1
−
(

s
t+δ

)β+1
]

(using (19))

=
−βq2

β + 1

(

(s+ δ)β+1 − sβ+1
)

(

(t+ δ)−(β+1) − t−(β+1)
)

=
−βq2

β + 1

(

(s+ δ)β+1 − sβ+1
)

t−(β+1)
(

(1 + δ/t)−(β+1) − 1
)

∼ βq2δ
(

(s+ δ)β+1 − sβ+1
)

t−(β+2) (using binomial expansion)

= Kt−(β+2), (20)
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where K = βq2δ((s+ δ)β+1 − sβ+1). Observe that

Var[Zδ
β(t)] = Var[Nβ(t+ δ)] + Var[Nβ(t)]− 2Cov[Nβ(t), Nβ(t+ δ)].

Denote R = λ2

β

(

1
Γ(2β) −

1
βΓ2(β)

)

= 2d− q2. Using (5) and (18), we get

Var[Zδ
β(t)] = q[(t+ δ)β + tβ ] +R[(t+ δ)2β + t2β ]

− 2
[

qtβ + q2(βB(β, 1 + β)t2β + F (β; t, t+ δ))
]

= q[(t+ δ)β − tβ ] +R[(t+ δ)2β + t2β ]− 2dt2β − 2q2F (β; t, t+ δ),

= q[(t+ δ)β − tβ ] +R[(t+ δ)2β + t2β ]− 2dt2β

− 2q2β(t+ δ)2βB(β, 1 + β; t/(t+ δ)) + 2q2(t(t+ δ))β .

Since B(β, 1 + β; t/(t+ δ)) ∼ B(β, 1 + β) for large t, we have

Var[Zδ
β(t)] = q[(t+ δ)β − tβ ] + (R − 2d)[(t+ δ)2β + t2β ] + 2q2(t(t+ δ))β

= q[(t+ δ)β − tβ ]− q2[(t+ δ)2β + t2β ] + 2q2(t(t+ δ))β

= q[(t+ δ)β − tβ ]− q2
[

(t+ δ)β − tβ
]2

= qtβ [(1 + δ/t)β − 1]− q2t2β
[

(1 + δ/t)β − 1
]2

∼ βδqtβ−1 − (βδq)2t2(β−1) (using binomial expansion)

∼ βδqtβ−1. (21)

Using (20) and (21), we finally obtain the correlation function, for large t,

Corr[Zδ
β(s), Z

δ
β(t)] =

Cov[Zδ
β(s), Z

δ
β(t)]

√

Var[Zδ
β(s)]

√

Var[Zδ
β(t)]

∼ t−
3
2 (β+1)S,

where S = K
√
βδq

√

Var[Zδ
β
(s)]

. Thus, the correlation function of the FPN process decays

at the rate t−3(β+1)/2. Since 3(β + 1)/2 ∈ (1.5, 2), for 0 < β < 1
3 , the result follows.

4. Dependence structure for fractional negative binomial process

In this section, we investigate the LRD property of the FNBP {Qβ(t)}t≥0, studied in

detail in [16], and the SRD property of the FNBN {Qδ
β(t)}t≥0. For that purpose, we

first need the following result from [16] regarding the mean, variance and autocovari-

ance functions of the FNBP.
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Theorem 3. The mean, variance and autocovariance functions of the FNBP {Qβ(t)}t≥0

are given by

(i) E[Qβ(t)] = q
Γ(pt+ β)

αβΓ(pt)
= qE[Y β(t)] ∼ q

(

pt

α

)β

=
( p

α

)β

E[Nβ(t)], for large t,

(ii) Var[Qβ(t)] = qE[Y β(t)]
(

1− qE[Y β(t)]
)

+ 2dE[Y 2β(t)],

(iii) Cov[Qβ(s), Qβ(t)] = qE[Y β(s)] + dE[Y 2β(s)]− q2E[Y β(s)]E[Y β(t)]

+ q2βE[Y 2β(t)B(β, 1 + β;Y (s)/Y (t))].

We need the following result also.

Lemma 2. Let 0 < β < 1 and a ≥ b ≥ 0. Then,

(a− b)β ≥ aβ − bβ . (22)

Proof. Since b ≥ 0, we have

x− b ≤ x, x ∈ (b, a)

⇒ (x− b)β−1 ≥ xβ−1 (since β < 1)

⇒

∫ a

b

(x− b)β−1dx ≥

∫ a

b

xβ−1dx

⇒ (a− b)β ≥ aβ − bβ ,

since 0 < β < 1.

The following is the key result used in the proof of the main result.

Lemma 3. Let 0 < β < 1 and 0 < s < t, where s is fixed. Then, as t tends to infinity,

(i) The asymptotic expansion of E[Y β(s)Y β(t)] is

E
[

Y β(s)Y β(t)
]

∼ E
[

Y β(s)
]

E
[

Y β(t− s)
]

. (23)

(ii) The asymptotic expansion of βE
[

Y 2β(t)B(β, 1 + β;Y (s)/Y (t))
]

is

βE
[

Y 2β(t)B(β, 1 + β;Y (s)/Y (t))
]

∼ E
[

Y β(s)
]

E
[

Y β(t− s)
]

. (24)

(iii) For fixed δ > 0, the asymptotic expansion of E
[

Y 2β(t+ δ)B(β, 1 + β;Y (t)/Y (t+ δ))
]

is

E
[

Y 2β(t+ δ)B(β, 1 + β;Y (t)/Y (t+ δ))
]

∼ B(β, 1 + β)E
[

Y 2β(t+ δ)
]

. (25)
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Proof. (i): First note that, by Stirling’s approximation,

E[Y β(t)] =
1

αβ

Γ(pt+ β)

Γ(pt)
∼

(

pt

α

)β

, for large t. (26)

Since the gamma subordinator {Y (t)}t≥0 has stationary and independent increments,

it suffices to show that

lim
t→∞

E[Y β(s)Y β(t)]

E [Y β(s)(Y (t)− Y (s))β ]
= 1.

Since {Y (t)}t≥0 is an a.s. increasing process with Y (0) = 0,

Y (t)− Y (s) ≤ Y (t) a.s.

⇒ E[Y β(s)(Y (t)− Y (s))β ] ≤ E[Y β(s)Y β(t)]

⇒
E[Y β(s)Y β(t)]

E [Y β(s)(Y (t)− Y (s))β ]
≥ 1. (27)

Now consider

E[Y β(s)Y β(t)]

E [Y β(s)(Y (t)− Y (s))β ]
=

E
[

Y β(s){Y β(t)− (Y (t)− Y (s))β}
]

E [Y β(s)(Y (t)− Y (s))β ]
+ 1

≤
E
[

Y β(s){Y β(t)− (Y β(t)− Y β(s))}
]

E [Y β(s)(Y (t)− Y (s))β ]
+ 1 (using (22))

=
E
[

Y 2β(s)
]

E [Y β(s)(Y (t)− Y (s))β ]
+ 1. (28)

From (27) and (28), we have that

1 ≤
E[Y β(s)Y β(t)]

E [Y β(s)(Y (t)− Y (s))β ]
≤

E
[

Y 2β(s)
]

E [Y β(s)(Y (t)− Y (s))β ]
+ 1.

Taking the limit as t tends to infinity in the above equation and using the fact that

{Y (t)}t≥0 has stationary and independent increments, we get

1 ≤ lim
t→∞

E[Y β(s)Y β(t)]

E [Y β(s)(Y (t)− Y (s))β ]
≤ 1 + lim

t→∞

E
[

Y 2β(s)
]

E [Y β(s)]E [Y β(t− s)]

1 ≤ lim
t→∞

E[Y β(s)Y β(t)]

E [Y β(s)(Y (t)− Y (s))β ]
≤ 1, (using Theorem 3(i))

which proves Part (i).

(ii): To prove Part (ii), it suffices to show that (in view of Part (i))

lim
t→∞

βE
[

Y 2β(t)B(β, 1 + β;Y (s)/Y (t))
]

E [Y β(s)Y β(t)]
= 1.
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Note that

B (β, 1 + β;Y (s)/Y (t)) =

∫
Y (s)
Y (t)

0

uβ−1(1 − u)βdu

≤

∫
Y (s)
Y (t)

0

uβ−1du (since (1− u)β ≤ 1)

=
Y β(s)

βY β(t)
,

which leads to

lim
t→∞

βE
[

Y 2β(t)B(β, 1 + β;Y (s)/Y (t))
]

E [Y β(s)Y β(t)]
≤ 1.

On the other hand,

B (β, 1 + β;Y (s)/Y (t)) =

∫
Y (s)
Y (t)

0

uβ−1(1− u)βdu

≥

∫
Y (s)
Y (t)

0

uβ−1(1− uβ)du (using (22))

=
1

β

(

Y β(s)

Y β(t)
−

Y 2β(s)

2Y 2β(t)

)

.

This leads to

lim
t→∞

βE
[

Y 2β(t)B(β, 1 + β;Y (s)/Y (t))
]

E [Y β(s)Y β(t)]
≥ lim

t→∞

βE
[

Y 2β(t) 1β

(

Y β(s)
Y β(t)

− Y 2β(s)
2Y 2β(t)

)]

E [Y β(s)Y β(t)]

= lim
t→∞

E
[

Y β(t)Y β(s)− Y 2β(s)/2
]

E [Y β(s)Y β(t)]

= 1− lim
t→∞

E
[

Y 2β(s)
]

2E [Y β(s)]E [Y β(t− s)]
= 1,

using Part (i) and Theorem 3(i). This completes the proof of Part (ii).

(iii): It is known that if X ∼ G(α, p1) and Y ∼ G(α, p2) are two independent gamma

random variables, then U = (X+Y ) and V = X/(X+Y ) are independent G(α, p1+p2)

and Beta(p1, p2) variables. Since {Y (t)}t≥0 is a gamma subordinator, Y (t + δ)
d
=

Y (t + δ) − Y (t) + Y (t)
d
= Y ∗(δ) + Y (t), where Y ∗(δ) and Y (t) are independent and

hence Y (t)
Y ∗(δ)+Y (t) and Y ∗(δ)+Y (t) are independent. In other words, Y (t)

Y (t+δ) and Y (t+δ)

are independent. Therefore,

lim
t→∞

E
[

Y 2β(t+ δ)B(β, 1 + β;Y (t)/Y (t+ δ))
]

B(β, 1 + β)E [Y 2β(t+ δ)]

= lim
t→∞

E
[

Y 2β(t+ δ)
]

E [B(β, 1 + β;Y (t)/Y (t+ δ))]

B(β, 1 + β)E [Y 2β(t+ δ)]
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= lim
t→∞

E [B(β, 1 + β;Y (t)/Y (t+ δ))]

B(β, 1 + β)
.

As t → ∞, Y (t) → ∞ a.s., Y (t)
Y (t+δ) → 1 a.s. and hence B(β, 1 + β;Y (t)/Y (t + δ)) →

B(β, 1 + β) a.s. Also, B(β, 1 + β;Y (t)/Y (t+ δ))(ω) ≤ B(β, 1 + β) for all ω and t and

hence uniformly bounded. Therefore,

lim
t→∞

E [B(β, 1 + β;Y (t)/Y (t+ δ))] = B(β, 1 + β),

which proves the result.

We are now ready to prove the main result of this section.

Theorem 4. The FNBP {Qβ(t)}t≥0 has the LRD property.

Proof. Consider the last term of Cov[Qβ(s), Qβ(t)] given in Theorem 3(iii), namely,

βq2E
[

Y 2β(t)B(β, 1 + β;Y (s)/Y (t))
]

.

Using Lemma 3(ii), we get for large t,

q2βE[Y 2β(t)B(β, 1 + β;Y (s)/Y (t)) ∼ q2E[Y β(s)]E[Y β(t− s)]. (29)

By (26) and (29), Theorem 3(iii) becomes for large t,

Cov[Qβ(s), Qβ(t)] ∼ qE[Y β(s)] + dE[Y 2β(s)]

− q2E[Y β(s)]

(

pt

α

)β

+ q2E[Y β(s)]

(

p(t− s)

α

)β

= qE[Y β(s)] + dE[Y 2β(s)]− q2E[Y β(s)]

(

(

pt

α

)β

−

(

pt− ps

α

)β
)

∼ qE[Y β(s)] + dE[Y 2β(s)], (30)

since tβ − (t− s)β ∼ βstβ−1 for large t.

Similarly, from Theorem 3(ii) and (26), we have

Var[Qβ(t)] ∼ q

(

pt

α

)β

− q2
(

pt

α

)2β

+ 2d

(

pt

α

)2β

= t2β
(

q
( p

tα

)β

− q2
( p

α

)2β

+ 2d
( p

α

)2β
)

∼ t2β
( p

α

)2β
(

2d− q2
)
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= t2βd1, (31)

where d1 = (p/α)
2β

R. Thus, from (30) and (31), the correlation between Qβ(s) and

Qβ(t) for large t > s, is

Corr[Qβ(s), Qβ(t)] ∼
qE[Y β(s)] + dE[Y 2β(s)]
√

t2βd1
√

Var[Qβ(s)]
= t−β

(

qE[Y β(s)] + dE[Y 2β(s)]
√

d1Var[Qβ(s)]

)

,

which decays like the power law t−β , 0 < β < 1 (see Definition 4). Hence, the FNBP

exhibits the LRD property.

Finally, we show that the FNBN {Qδ
β(t)}t≥0 has the SRD property.

Theorem 5. The FNBN {Qδ
β(t)}t≥0 exhibits the SRD property.

Proof. Let s, δ ≥ 0 be fixed and s+ δ ≤ t. By Theorem 3(i), we have for large t,

E[Qδ
β(t)] = q(E[Y β(t+ δ)]− E[Y β(t)])

∼ q

(

pt

α

)β
[

(1 + δ/t)β − 1
]

(32)

∼ qβδ
( p

α

)β

tβ−1. (33)

Now using Theorem 3(iii), we get

E[Qδ
β(s)Q

δ
β(t)] = E[Qβ(s+ δ)Qβ(t+ δ)]− E[Qβ(s+ δ)Qβ(t)]− E[Qβ(s)Qβ(t+ δ)]

+ E[Qβ(s)Qβ(t)]

= βq2
(

E[Y 2β(t+ δ)B(β, 1 + β;Y (s+ δ)/Y (t+ δ))]

− E[Y 2β(t)B(β, 1 + β;Y (s+ δ)/Y (t))]

− E[Y 2β(t+ δ)B(β, 1 + β;Y (s)/Y (t+ δ))]

+ E[Y 2β(t)B(β, 1 + β;Y (s)/Y (t))]

)

∼ q2
(

E[Y β(s+ δ)]E[Y β(t− s)]− E[Y β(s+ δ)]E[Y β(t− s− δ)]

− E[Y β(s)]E[Y β(t− s+ δ)] + E[Y β(s)]E[Y β(t− s)]
)

(using (24))

∼ q2
(

pt

α

)β [

E[Y β(s+ δ)]
(

1−
s

t

)β

− E[Y β(s+ δ)]

(

1−
s+ δ

t

)β

− E[Y β(s)]

(

1−
s− δ

t

)β

+ E[Y β(s)]
(

1−
s

t

)β
]

, (34)
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using (26). From (32), we have

E[Qδ
β(s)]E[Q

δ
β(t)] ∼ q2

(

pt

α

)β
(

E[Y β(s+ δ)]− E[Y β(s)]
)

(

(

1 +
δ

t

)β

− 1

)

.

Using (1±s/t)β ∼ 1±βs/t+β(β−1)s2/2t2, for large t, in (34) and after some routine

calculations, we get

Cov[Qδ
β(s), Q

δ
β(t)] ∼ q2

(

pt

α

)β
β(β − 1)

2t2

[

(s2 − (s+ δ)2 − δ2)E[Y β(s+ δ)]

+ (s2 + δ2 − (s− δ)2)E[Y β(s)]
]

= tβ−2q2δ
( p

α

)β

β(1 − β)
(

(s+ δ)E[Y β(s+ δ)]− sE[Y β(s)]
)

. (35)

Using E[Q2
β(t)] = qE[Y β(t)] + 2dE[Y 2β(t)] (see Theorem 3(ii)), we get

E[(Qδ
β(t))

2] = E[Q2
β(t+ δ)] + E[Q2

β(t)]− 2E[Qβ(t+ δ)Qβ(t)]

= q
(

E[Y β(t+ δ)]− E[Y β(t)]
)

+ 2d
(

E[Y 2β(t)] + E[Y 2β(t+ δ)]
)

− 2dE[Y 2β(t)]− 2βq2E[Y 2β(t+ δ)B(β, 1 + β;Y (t)/Y (t+ δ))]

∼ q
(

E[Y β(t+ δ)]− E[Y β(t)]
)

+ 2d
(

E[Y 2β(t)] + E[Y 2β(t+ δ)]
)

− 2d
(

E[Y 2β(t)] + E[Y 2β(t+ δ)]
)

(using (25))

= q
(

E[Y β(t+ δ)]− E[Y β(t)]
)

= E[Qδ
β(t)].

From (33), we have

Var[Qδ
β(t)] ∼ tβ−1βδq

( p

α

)β

−

(

βδqpβ

αβ

)2

t2(β−1)

∼ tβ−1βδq
( p

α

)β

. (36)

Thus, using (35) and (36), we have for fixed s and large t,

Corr[Qδ
β(s), Q

δ
β(t)] ∼ t−(3−β)/2





q2β(1 − β)δ
(

p
α

)β (
(s+ δ)E[Y β(s+ δ)]− sE[Y β(s)]

)

√

Var[Qδ
β(s)]βδq

(

p
α

)β



 .

Since (3−β)/2 ∈ (1, 1.5), for 0 < β < 1, the increments of the FNBP possess the SRD

property.

Remark 2. Since the FPP is a non-stationary process, the FNBP is also a non-

stationary process. Also, as seen earlier, the FNBP has the long-range dependence
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property, its increments are correlated and exhibit the short-range dependence prop-

erty. Such stochastic models have wide applicability in many different areas, such as

economics, finance, physics and engineering sciences.
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