Header menu link for other important links
Categorizing user interests in recommender systems
Saha S, Majumder S, , Mahanti A
Published in Springer
Volume: 6277
Pages: 282 - 291

The traditional method of recommender systems suffers from the Sparsity problem whereby incomplete dataset results in poor recommendations. Another issue is the drifting preference, i.e. the change of the user’s preference with time. In this paper, we propose an algorithm that takes minimal inputs to do away with the Sparsity problem and takes the drift into consideration giving more priority to latest data. The streams of elements are decomposed into the corresponding attributes and are classified in a preferential list with tags as “Sporadic”, “New”, “Regular”, “Old” and “Past” – each category signifying a changing preference over the previous respectively. A repeated occurrence of attribute set of interest implies the user’s preference for such attribute(s). The proposed algorithm is based on drifting preference and has been tested with the Yahoo Webscope R4 dataset. Results have shown that our algorithm have shown significant improvements over the comparable “Sliding Window” algorithm.

About the journal
JournalData powered by TypesetLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
PublisherData powered by TypesetSpringer
Open AccessNo