Get all the updates for this publication
In this paper, we study the fractional Poisson process (FPP) time-changed by an independent Lévy subordinator and the inverse of the Lévy subordinator, which we call TCFPP-I and TCFPP-II, respectively. Various distributional properties of these processes are established. We show that, under certain conditions, the TCFPP-I has the long-range dependence property, and also its law of iterated logarithm is proved. It is shown that the TCFPP-II is a renewal process and its waiting time distribution is identified. The bivariate distributions of the TCFPP-II are derived. Some specific examples for both the processes are discussed. Finally, we present simulations of the sample paths of these processes.
Journal | Data powered by TypesetJournal of Theoretical Probability |
---|---|
Publisher | Data powered by TypesetSpringer |
ISSN | 0894-9840 |
Open Access | No |